Finite strain constitutive modeling for shape memory alloys considering transformation-induced plasticity and two-way shape memory effect
نویسندگان
چکیده
This work presents a three-dimensional constitutive model for shape memory alloys considering the TRansformation-Induced Plasticity (TRIP) as well Two-Way Shape Memory Effect (TWSME) through large deformation framework. The presented logarithmic strain based is able to capture strains and rotations exhibited by SMAs under general thermomechanical cycling. By using martensitic volume fraction, transformation strain, internal stress, TRIP tensors state variables, capable stress-dependent generation when are subjected multiaxial stress state, TWSME thermomechanically trained load-free conditions. A detailed implementation procedure of proposed user-defined material subroutine within finite element framework allowing solving different Boundary Value Problems (BVPs). Comprehensive instruction on calibrating parameters derivation continuum tangent stiffness matrix also provided. In end, simulated cyclic pseudoelastic actuation responses wide range SMA systems both uniaxial states compared against experimental results validate modeling capabilities.
منابع مشابه
A 3d Micro-Plane Model for Shape Memory Alloys
are compared with the experimental results. In these test results the shape memory alloys behavior as: super elasticity under various temperatures, loading rate effects, asymmetry in tension and pressure, various loops of loading and unloading, hydrostatic pressure effects, different proportional tension-shear biaxial loading and unloading, and also deviation from normality due to non-proportio...
متن کاملTransformation yield surface of shape memory alloys
Shape-memory alloys transform under stress, and this stress-induced transformation is useful for various practical applications. The stress at which the alloy transforms depends on the orientation of the stress relative to the specimen, and may be described using a transformation yield surface. This paper provides early results of a theoretical treatment of the transformation yield surface of s...
متن کاملLimitations of Constitutive Relations for TiNi Shape Memory Alloys
Phase transformation tensor Q in the constitutive equation pmposed by Tanaka has been evaluated by employing experimental data of TiNi alloys in a constrained recovery process. It demonstrates that the absolute value of Q for the consmined recovery process is typically about 0.6 0.7 x103 MPa, which is much smaller than that for the stress induced martensitic transformation (typically 2.5 3.5 x1...
متن کاملA micromechanics-inspired constitutive model for shape-memory alloys
This paper presents a three-dimensional constitutive model for shape-memory alloys that generalizes the one-dimensional model presented earlier (Sadjadpour and Bhattacharya 2007 Smart Mater. Struct. 16 S51–62). These models build on recent micromechanical studies of the underlying microstructure of shape-memory alloys, and a key idea is that of an effective transformation strain of the martensi...
متن کاملConstitutive Model of Shape Memory Alloys for Asymmetric Quasiplastic Behavior
A simple constitutive model of shape memory alloys for analyses of tension–compression quasiplastic behavior is derived. Here, three martensitic variants are considered; namely, thermal-induced, tensile stress-induced, and compressive stress-induced martensitic variants. Reorientation from one variant to another variant is assumed to take place according to a reorientation energy criterion base...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Solids and Structures
سال: 2021
ISSN: ['1879-2146', '0020-7683']
DOI: https://doi.org/10.1016/j.ijsolstr.2020.03.009